我哥居然成神了_第270章 暗黑神界 首页

字体:      护眼 关灯

上一章 目录 下一页

   第270章 暗黑神界 (第1/2页)

    可是到了神界,却完全不一样了。

    这个世界就像是传说中的极乐净土,永远充斥着光明,和谐,美好。

    似乎没有一丝阴霾。

    也就永远没有黑夜。

    可是,苏小北却觉得,黑暗和光明是世界的两半。

    就如同一只阴阳眼。

    阴阳交缠,互为犄角。

    一个完全光明,没有丝毫阴暗的世界,真的存在吗?

    想到这里,苏小北便觉得不寒而栗。

    眼睛所看到的,不一定是真实!

    干脆,他闭上眼睛,用神识来感悟周围的一切。

    可是,完全屏蔽眼睛以后,苏小北就感觉到了,有什么不对。

    神识所感受到的,根本没有任何阳光,而是无尽的阴冷,与诡异。

    这一点,实在太过反常!

    苏小北咬紧牙关,将神识延伸出去。

    越延伸出去,苏小北就越觉得胆寒!

    这到底是什么情况?

    此时,在他的神识之中,神界完全换了一个模样。

    仓忙之中,苏小北再次睁开眼睛。

    再次看到的,依旧是神界的花团锦簇,一切都无比美好。

    这,不对劲!

    无数的灵力涌入脑海

    树

    图论

    共18个含义

    树(英语:tree)是一种抽象数据类型(adt)或是实现这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>0)个有限节点组成一个具有层次关系的集合。它是一种无向图(undirectedgraph),其中任意两个顶点间存在唯一一条路径。树图广泛应用于计算机科学的数据结构中,比如二叉查找树、堆、trie树以及数据压缩中的霍夫曼树等。

    顶点

    v

    边

    v-1

    色数

    2

    定义

    如果一个无向简单图g满足以下相互等价的条件之一,那么g是一棵树:

    g是没有回路的连通图。

    g没有回路,但是在g内添加任意一条边,就会形成一个回路。

    g是连通的,但是如果去掉任意一条边,就不再连通。

    g是连通的,并且3顶点的完全图?不是g的子图。

    g内的任意两个顶点能被唯一路径所连通。

    如果无向简单图g有有限个顶点(设为n个顶点),那么g是一棵树还等价于:

    g是连通的,有n?1条边,并且g没有简单回路。

    如果一个无向简单图g中没有简单回路,那么g是森林。

    性质

    一棵树中每两个点之间都有且只有一条路径(指没有重复边的路径)。一颗有n个点的树有n-1条边,也就是连接n个点所需要的最少边数。所以如果去掉树中的一条边,树就会不连通。

    如果在一棵树中加入任意的一条边,就会得到有且只有一个环的图。这是因为这条边连接的两个点(或是一个点)中有且只有一条路径,这条路径和新加的边连在一起就是一个环。如果把一个连通图中的多余边全部删除,所构成的树叫做这个图的生成树。

    如果要在树中加入一个点,就要加入一条这个点和原有的点相连的边。这条边不会给这棵树增加一个环或者多余的路径。所以每次这样加入一个点,就可以构成一棵树。

   
加入书签 我的书架

上一章 目录 下一页